X
I agree to the terms and privacy policy
144188195215245280

Alcoat Metal Finishers

Coimbatore, Tamil Nadu

| GST  33AIJPS4020M1Z5

View Mobile Number
Established in Coimbatore in 2000, Alcoat Metal Finishers, is a leader in the filed of architectural anodizing and electro-colouring in South India. We are a job shop offering a broad range of non-fading long lasting colours in Glossy and Matt finishes ranging from light champagne to black as well as Copper, Gold and Stainless steel shades.We utilize Italian Technology which results in greater hardness, higher corrosion-abrasion resistance and significant time-energy conservation. Alkaline etching technology in controlled heating environment produces more even anodic coating while minimizing weight loss.We also use Italian Chemicals to acheive high-quality finish. Our superior technology and commitment to work has enabled us to develop a reputation for quality, cost effetiveness and timely delivery.+ Read More

Nature of Business

Service Provider

Total Number of Employees

Upto 10 People

Legal Status of Firm

Sole Proprietorship (Individual)

Annual Turnover

Rs. 50 Lakh - 1 Crore

GST Number

33AIJPS4020M1Z5

Colour Anodizing Services
Ask for Details

Color Anodizing Services

Color Anodizing Services

Get Latest Price

Ask for Details

Hard Anodizing

Get Latest Price

Hard anodizing, also known as hardcoating or Type III anodizing, is a process used to create a hard wearing, corrosion resistant coating on a variety of metals. Anodizing can be broken down into two broad sub-categories: decorative and hard anodizing. The main differences between the two is how thick and durable the coating is, and the exact process used to create it.
The Anodizing Process :-

Anodizing a metal part involves putting it into a liquid that is electrically conductive, typically an acid solution, called an electrolyte. Circuits have a positive electrode (cathode) where electrons enter and a negative one (anode) where they leave; in anodizing, the metal part becomes the negative electrode. When an electric current is passed through the solution, the action of the electrons leaving the circuit through the metal part causes a tough, corrosion resistant coating of oxidization to build up. The coating can either be left as it is after this treatment or further enhanced with decorative dyes and other performance-improving additives.

The process of manufacturing hard anodized parts differs from decorative coatings in several ways. It uses electric currents that are generally higher and electrolyte solutions that are slightly weaker. The temperature of the electrolyte solution is also lower allowing for less distortion of precision parts and better adhesion of the coating. Generally speaking, the anodizing process is also considered to be relatively environmentally friendly and the byproducts are recyclable.
Types of Coatings :-

Hard anodized coatings are typically applied to heavy wear industrial parts intended for use in aggressive or highly corrosive applications. These coatings are typically far thicker and harder than decorative ones, and usually lend the parts a durability approaching that of hard faced or case hardened steel. They also penetrate and cover surface imperfections such as fissures better.

Generally, hard anodized parts have coatings which exceed 10 μm (0.01 mm or 0.00004 inches) with typical coatings exceeding 25 μm (0.025 mm or 0.0001 inches). Decorative anodizing usually features coatings of less than 10 μm and, although durable, doesn't have the same exceptional wear characteristics of hard anodizing. Decorative or architectural treatments are commonly found on consumer items such as domestic cookware, electronic device casings, and ornaments.

Hardcoated items usually have a dark gray, matte finish, although this can vary depending on the metal the item is made of and the composition of the electrolyte solution. This method can also produce a black finish as well as various shades of bronze. Decorative anodizing usually produces a lighter shade, and can be made matte or shiny. Both types typically take dye well.
Benefits :-

One of the main reasons to anodize metal is to make it more resistant to corrosion. The thick outer oxidized layer prevents the internal material from being exposed to moisture, oxygen, and other factors that can cause the metal to disintegrate. Sealed items are even more corrosion resistant and can often stand up to thousands of hours of exposure to salt water sprays.

View Complete Details

Yes I'm interested

As with decorative coatings, hard anodized surfaces can be dyed, although, in most cases, they are left as is due to the purely functional nature of most of the parts involved. They are, however, often impregnated with performance enhancing additives such as Teflon® which improve the part's self-lubrication. In some cases, they are also sealed in boiling distilled water or dichromate solutions to further improve their corrosion resistance.
Disadvantages :-

Metal that has been anodized has a much lower fatigue strength, meaning that it's more likely to fracture when put under stress, although this can be improved if the item is sealed. Sealing the item can reduce its resistance to abrasive wear, however, so whether or not a part is sealed often depends on its final use. Anodizing also does not protect thinner metal items from damage like dents. The outer coating does make the metal part thicker, which can be a problem if screw holes or other spaces are pre-drilled.

View Complete Details

Yes I'm interested

Anodized Materials

Get Latest Price

Although aluminum is by far the most common metal subjected to hard anodizing, other materials can benefit from the treatment, including tantalum, magnesium, and titanium. In all cases, the treatments lend the parts exceptional wear and corrosion resistance and can be dyed nearly any color. Common uses for hard anodized parts include heavy commercial cook and bakeware, medical prosthetic parts, and automotive components. The military is another large consumer of these products, as most hard anodized surfaces meet or exceed stringent military specifications.

View Complete Details

Yes I'm interested

Hardcoating

Get Latest Price

Hard anodizing, also known as hardcoating or Type III anodizing, is a process used to create a hard wearing, corrosion resistant coating on a variety of metals. Anodizing can be broken down into two broad sub-categories: decorative and hard anodizing. The main differences between the two is how thick and durable the coating is, and the exact process used to create it.

The Anodizing Process :-

Anodizing a metal part involves putting it into a liquid that is electrically conductive, typically an acid solution, called an electrolyte. Circuits have a positive electrode (cathode) where electrons enter and a negative one (anode) where they leave; in anodizing, the metal part becomes the negative electrode. When an electric current is passed through the solution, the action of the electrons leaving the circuit through the metal part causes a tough, corrosion resistant coating of oxidization to build up. The coating can either be left as it is after this treatment or further enhanced with decorative dyes and other performance-improving additives.

The process of manufacturing hard anodized parts differs from decorative coatings in several ways. It uses electric currents that are generally higher and electrolyte solutions that are slightly weaker. The temperature of the electrolyte solution is also lower allowing for less distortion of precision parts and better adhesion of the coating. Generally speaking, the anodizing process is also considered to be relatively environmentally friendly and the byproducts are recyclable.

 

Types of Coatings :-

Hard anodized coatings are typically applied to heavy wear industrial parts intended for use in aggressive or highly corrosive applications. These coatings are typically far thicker and harder than decorative ones, and usually lend the parts a durability approaching that of hard faced or case hardened steel. They also penetrate and cover surface imperfections such as fissures better.

Generally, hard anodized parts have coatings which exceed 10 μm (0.01 mm or 0.00004 inches) with typical coatings exceeding 25 μm (0.025 mm or 0.0001 inches). Decorative anodizing usually features coatings of less than 10 μm and, although durable, doesn't have the same exceptional wear characteristics of hard anodizing. Decorative or architectural treatments are commonly found on consumer items such as domestic cookware, electronic device casings, and ornaments.

Hardcoated items usually have a dark gray, matte finish, although this can vary depending on the metal the item is made of and the composition of the electrolyte solution. This method can also produce a black finish as well as various shades of bronze. Decorative anodizing usually produces a lighter shade, and can be made matte or shiny. Both types typically take dye well.


View Complete Details

Yes I'm interested

Get Price & Details

Get Price & Details

Get Price & Details

Get Price & Details

Get Price & Details

Get Price & Details

Surface Finishers

Surface Finishers

Get Latest Price

Ask for Details

Get Price & Details
Tell us what you
need
Receive seller
details
Seal the deal
Save time! Get Best Deal
I agree to the terms and privacy policy